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1 Introduction

Forecasting models of aggregate inflation including those that employ a Phillips Curve have been
unable to outperform consistently univariate statistical models of aggregate inflation (Faust and
Wright 2013).1 Peach, Rich, and Linder (2013) suggest that the empirical estimates of a Phillips
Curve may be diluted when applied to aggregate inflation because the influence of resource gap
factors (such as the difference between measured unemployment and its ”natural” rate) may
affect the costs of services (services as non-tradable) more directly and substantially than on
the costs of goods. Similarly, using data from New Zealand Hargreaves, Kite, and Hodgetts
(2006) demonstrate how a Phillips Curve relationship is important for modeling inflation for
non-tradable prices and therefore model tradeables and nontradeables prices separately. In each
of these cases, the supporting intuition centers on how the key factors that influence tradeables
(or goods) can differ materially from factors that affect prices in non-tradeables (services). Fol-
lowing from these ideas, we hypothesize that a resource gap measure has an important effect
on services price determination, and not on goods price inflation.

In this paper, we build a composite model for inflation that consists of bi-variate state space
model (unobserved components) of services inflation and the unemployment rate combined with
a parsimonious univariate model for goods inflation. The services inflation model adapts the
bivariate state space model as in Stella and Stock (2013) and exploits an empirical relationship
between services inflation and the unemployment gap.2 The forecasting model for aggregate
inflation in this paper captures the apparent relationship in that unemployment rate deviations
from trend (a latent variable estimate of the ’natural rate’) appear useful for predicting services
inflation.

We estimate an inflation in parts model in which we separately measure services inflation
and goods inflation. Using these two inflation series separately, the model isolates a durable sta-
tistical relationship between services inflation and the unemployment rate. The bivariate state
space model of services inflation exploits the empirical Phillips Curve correlation suggested in
Peach, Rich, and Linder (2013). From the estimated model, we generate forecasts of services
inflation and we combine it with the goods inflation forecast from an estimated trend in goods
inflation (i.e. the five year moving average of the past available data) to compute a composite
forecast of the aggregate inflation.3 We then evaluate the forecasts of aggregate inflation, ser-
vices inflation (from the bi-variate state space model), and goods inflation (parsimonious model).

We find that modeling inflation separately (goods as a univariate time-series model and
services inflation in a state space form with unemployment) produces significant improvements
in forecast accuracy for aggregate inflation relative to a standard Phillips Curve benchmark; the
benchmark is a forecasting application of Stella and Stock’s bivariate model for total inflation.

1Here we interpret the Phillips Curve as being the correlation between deviations of unemployment from its
natural rate and deviations of inflation from its trend or expected rate.

2See Peach, Rich, and Linder (2013). They employ an empirical approach to the data that differs from our
methods.

3Among alternative models of goods inflation, we estimated one that specifically extends the bivariate UC
state space model to three variables. The resulting tri-variate unobserved components state space model consisted
of: unemployment rate, services inflation, and goods inflation. In a separate specification, we model goods
inflation as a trend cycle decomposition with stochastic volatility along the lines of Stock and Watson (2007).
Separate models for services inflation and goods inflation produces substantially more accurate forecasts than a
single model of the aggregate. These results are consistent with Peach, Rich, and Linder (2013).
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We choose this particular benchmark because it modestly outperforms difficult to beat univari-
ate approaches such as Atkeson and Ohanian (2001) and Stock and Watson (2007), though the
gains are mostly limited to short-horizons.4 We apply their specification to services inflation
with the unemployment rate. Furthermore, our ”inflation in parts” framework performs well
in terms of forecast accuracy of aggregate inflation relative to common univariate benchmarks
that are usually the most accurate in terms of root mean squared error and other point-based
accuracy criteria.

Our empirical model estimates a Phillips curve relationship between services inflation and
unemployment rate as evidenced by a relatively stable and negative estimate of the slope, a
result consistent with Lee and Nelson (2007), Stella and Stock(2013), and King and Watson
(1994).5 Our results contrast with Atkeson and Ohanian (2001) and Stock and Watson (2007),
for example, those papers document the failure of standard Phillips curve models in forecasting
aggregate inflation compared to simple univariate benchmarks in the post 1990 period. Fur-
thermore, we also show that, as advocated by Gordon 2013 and Ball and Mazumder 2014, the
use of the short-term unemployment rate as proxy for economic slack in our model framework
modestly improves forecasting accuracy for aggregate PCE inflation.

All results in the main text employ the Personal Consumption Expenditures price deflator
as the measure for inflation. In the appendix, we also report results for Consumer Price Index
(CPI) inflation, and our findings of forecasting gains extend to CPI inflation as well.

The paper is organized as follows: Section 2 describes the relevant literature, Section 3
outlines the data and empirical strategy. Section 4 discusses the estimation and forecasting
results, and Section 5 concludes.

2 Review of Relevant Literature

Existing research indicates the potential for forecasting accuracy improvement from distinguish-
ing between inflation of goods and of services in models of inflation. Peach, Rich, and Antoni-
ades (2004) use a vector error correction model to estimate goods inflation and services inflation
separately while also imposing a long-run relationship between the two measures. The paper
demonstrates that the short-run to medium-run dynamics of the two inflation series depend
on the deviation of the long-run equilibrium between the two inflation rates. Their empirical
model consists only of the lags of good and services inflation as explanators, and therefore they
do not investigate the Phillips Curve.

Clark (2004) provides a qualitative analysis of the behavior of core goods and core services
inflation as measured by PCE price index. He identifies 1994 as the year in which the dynamics
of the two series began to diverge.6 Given differences in the dynamics of the two series, there
maybe benefits modeling each series separately, and then combine the disaggregate forecasts as

4The specification in Stella and Stock (2013) exploits the Phillips curve relationship between total unemploy-
ment rate and total inflation.

5Each of the cited works estimates a negative correlation between aggregate inflation and unemployment rate
at business cycle frequencies.

6Clark(2004) attributes this shift in dynamics to both the exchange rate and the increase in global competi-
tion.
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an alternative to modeling the aggregate directly.

More recently, Peach, Rich, and Linder (2013) stress the importance of separately modeling
goods and services inflation and show that in the case of core goods inflation, the unemploy-
ment gap does not play any material role. In contrast, the unemployment gap has significant
influence on core services inflation. Peach, Rich, and Linder also suggest that long-run inflation
expectations play an important role for the behavior of core services inflation but not for core
goods inflation. In the case of core goods inflation they find that short-term inflation expecta-
tions (one-year out) plays a material role in explaining its time-series behavior. In their study,
they emphasize that the behavior and determinants of services and goods inflation are distinct,
and they limit their forecast comparison to their composite model versus the standard Phillips
curve model from 2005 to 2012.

Existing research is divided on whether there are forecasting accuracy improvements from
modeling aggregate inflation using sub-components of the aggregate inflation measure. In gen-
eral, exising evidence suggests there may be gains from modeling disaggregates of the index
using data from the United States. Bermingham and DAgostino (2011) empirically test the
forecast performance of time series models with multiple-level of dis-aggregation both for US
PCE inflation and Euro Area inflation. They employ Bayesian Vector Auto Regression (BVAR)
and simple Auto Regressive (AR) models. Their simplest BVAR is three variable VAR that
has durables goods, non-durable goods, and services. The next one is 15-variable BVAR with
15 dis-aggregated inflation variables, followed by 50, and 169 variables BVAR. In each of these
models they compute the aggregate inflation from the dis-aggregates and compare it to the
random walk forecast of aggregate inflation (along the lines of Atkeson and Ohanian (2001)).
Similarly they also use AR models for each dis-aggregated component and then aggregate at
3-level, 15-level, 50-level, and 169-level and compare it to the same random walk forecast. They
find in the USA case, dis-aggregated BVAR (especially the 15-component) generally performs
well relative to random walk benchmark. Whereas, in the case of Euro Area, disaggregation
through the AR models works better. In the USA case, the authors suggest that strong common
co-movement among the dis-aggregated series are captured by BVARs (multivariate) (consistent
with Reis and Watson (2010)). Measures for the Euro Area display less commonality among
the dis-aggregated components and more individual series dynamics, which is consistent with
superior performance of aggregation based on AR models.

Hubrich (2005), and Hendry and Hubrich (2006,2011) find that forecasting aggregate infla-
tion through disaggregation does not help in forecasting Euro Area inflation but it helps for
US inflation. The degree of improvement in the forecast accuracy of US inflation importantly
depends on the length of the sample period and the level of the disaggregation. They use set of
VARs and include disaggregates directly in the model that has aggregate inflation. Following
similar approach, Luetkepohl (2010) estimates system of VARs that include both aggregate
and disaggregate information for Euro Area inflation only and finds that including too many
disaggregates could lead to estimation error and specification error.

Faust and Wright (2013) perform a comprehensive survey of various approaches to forecast
inflation. In one exercise, they investigate whether there are gains to forecasting aggregate
CPI inflation by modeling its disaggregates individually and then aggregating them. In their
example, they found no material differences between the aggregate and disaggregate approaches
unless parameter restrictions were imposed on the disaggregate equations.
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Furthermore, country specific studies of inflation such as Duarte and Rua (2005), Bruneau
et al (2007) and Moser et al (2007) use similar time series models and find that generating
aggregate inflation forecasts using disaggregates helps for Portugal, France, and Austria respec-
tively.

Stock and Watson (2015) documents evidence of estimating a superior trend inflation by us-
ing dis-aggregated 17-components of aggregate PCE inflation relative to trend estimated from
the univariate model of aggregate PCE inflation. They use a multivariate extension of the
univariate unobserved components stochastic volatility model of trend inflation in Stock and
Watson (2007).

The evidence of forecasting improvements by modeling inflation using its components mo-
tivates our paper. We build on the results from the aforementioned studies, especially Peach,
Rich and Linder (2013). In light of ample evidence documenting an important role of stochastic
volatility in the inflation process (e.g. Stock and Watson (2007)), we allow for time variation
in the variance of the innovations to various components, and that in turn implies time-varying
relationship between changes in services inflation and unemployment rate.7 We perform ex-
tensive forecast evaluation exercises, specifically comparing the benchmark model’s forecast
performance against a number of popular alternative models as well as across sub-samples. We
use only two major components of aggregate inflation (services and goods inflation). The final
product is a composite model of services inflation and goods inflation to forecast aggregate
inflation.

3 Data and the Model

We employ the following quarterly data series in this research: the overall unemployment rate
(16 years and over ), the short-term unemployment rate (share of labor force unemployed for
26 weeks or less), two components of the Personal Consumption Expenditures deflator – the
services component as well as the goods component, and these two components’ relative shares
of Personal Consumption Expenditures deflator. The unemployment rate(s) series are quarterly
average of the monthly series available from the Bureau of Labor Statistics, and PCE inflation
rate(s) including their shares are available from Bureau of Economic Analysis. We are inter-
ested in forecasting the quarterly annualized Personal Consumption Expenditures deflator in
the aggregate, so we combine our quarterly forecasts of services and goods components using the
actual weights to produce the aggregate inflation forecast. The weights represent the relative
share of services and goods in the personal consumption expenditures.

Let Ut represent the unemployment rate for the aggregate data series and let UNt represent
the natural rate of unemployment, which may vary over time. The natural rate of unemploy-
ment is a latent variable in this approach and will be estimated as part of the model estimation.
We use P st as the price level measure for services, P gt as the price level measure for goods, and
P Tt as the aggregate price level measure. For inflation as measured by these series, we represent
the rate in the services component by πst and in the goods component by πgt .

7Moreover, our framework accounts for a slowly varying local mean for services inflation, which is an important
feature of accurate inflation forecasts (Faust and Wright 2013).
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We assume that both services inflation and unemployment rate data series can be mod-
eled as an unobserved components, that is, the sum of a long-term trend component that is a
random-walk, a stationary transitory (cyclical) component, and measurement error component.
We assume a common cyclical component. The model is estimated with Bayesian Gibbs sampler.

The model specifies the latent variables (the unobserved trend and cyclical components)
within a state-space form of the time series model. We outline the specification below, let:

Ut represent the aggregate unemployment rate
UNt represent the natural rate of unemployment
UCt represent the cyclical component of the unemployment rate
πst represent the services inflation component
πs,∗t represent the trend services inflation

πs,Ct represent the cyclical services inflation component
πgt represent the goods inflation component

The variables Ut, π
s
t , and πgt are observable, and the other four measures are unobservable.

3.1 Modeling Services Inflation

Our setup follows closely that of Lee and Nelson (2007) and Stella and Stock (2013). We view
the multivariate unobserved components model in Stella and Stock (2013) as state of the art
so we use that approach as applied to modeling services inflation. Specifically, the services
inflation rate is modeled as a sum of three unobserved stochastic processes: random walk trend
component, a stationary cyclical component (common also to cyclical unemployment), and a
serially uncorrelated measurement error component.8 Similarly, the unemployment rate, is de-
composed into the random walk trend, a stationary cyclical unemployment, and a measurement
error component. The stochastic trend unemployment rate can be interpreted as the natural
rate of unemployment (or alternatively as the non-accelerating inflation rate of unemployment
or NAIRU), and is usually assumed to evolve independently of monetary policy actions. Other
studies that have incorporated time varying random walk trends in both unemployment rate
and inflation include Lee and Nelson (2007), Harvey (2011), and Stella and Stock (2013).

Ut = UNt + UCt + ηt (1)

πst = πs,∗t + πs,Ct + η̃t (2)

The trend or ”permanent” components are modeled as:

UNt = UNt−1 + εt, εt i.i.d. N(0, γI1) (3)

πs,∗t = πs,∗t−1 + ε̃t, ε̃t = σε̃,tξε̃,t ξε̃,t i.i.d. N(0, γI1) (4)

ln(σ2
ε̃,t) = ln(σ2

ε̃,t−1) + νε̃,t νε̃,t i.i.d. N(0, I1) (5)

8The assumption that the services inflation trend follows a random walk is a reasonable one because the
factors that drive it are unknown but are quite persistent, a point emphasized in Lee and Nelson (2007) for the
case of aggregate inflation trend.
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Our specification allows the variance of the innovations to the services inflation trend to vary
over time. However, as in Stella and Stock (2013) we don’t allow stochastic volatility in the
innovations to trend unemployment.9

The cyclical components are modeled as follows:

UCt = α1U
C
t−1 + α2U

C
t−2 + ζt ζt = σζ,tξζ,t ξζ,t i.i.d. N(0, I1) (6)

ln(σ2
ζ,t) = ln(σ2

ζ,t−1) + νζ,t νζ,t i.i.d. N(0, γI1) (7)

πs,Ct = λUCt (8)

The cyclical services inflation component is a function of unemployment cycle. The param-
eter λ relates the unemployment gap and the services inflation gap across business cycle fre-
quencies. The estimated parameters determine the importance of a Phillips curve relationship.
Specifically, there is time-variation in the innovation variances to the various latent components
of the multivariate UC model described above. This implies a corresponding time-varying bi-
variate vector autoregressive (VAR) in the changes in unemployment gap and services inflation
gap. At each point in time, the particular values of the innovation variances characterize the im-
plied coefficients of the bivariate VAR.10 The model generates an implied estimate of the slope
of the Phillips curve which is the sum of the coefficients on the current and lagged changes in
unemployment gap of the services inflation gap equation of this implied bivariate VAR.11

Finally, the measurement error components are as follows:

ηt i.i.d. N(0, γI) (9)

η̃t = ση̃,tξη̃,t ξη̃,t i.i.d. N(0, I) (10)

ln(σ2
η̃,t) = ln(σ2

η̃,t−1) + νη̃,t νη̃,t i.i.d. N(0, γI) (11)

As discussed in Stella and Stock (2013), allowing for stochastic volatility in the measurement
error of unemployment equation poses a challenging empirical problem of separately estimating
the cyclical unemployment and the related measurement error. To simplify this challenge, we
restrict the variance of the measurement error to be constant. Stella and Stock (2013) highlight
that the forecasting performance of their model was not sensitive to whether one has constant
or time-varying variance in the measurement error, but they show that time-varying variance

9Our results are not sensitive to this restriction.
10A multivariate unobserved component (UC) model with common trend such as the one laid out above has a

companion implied vector autoregressive (VAR) representation of an infinite lag length. This VAR representation
results from the Kalman filter’s (recursive) predictive filtering algorithm, specifically the estimated predictive
filtering weights constitute the coefficients of the corresponding implied VAR model. The predictive weights
computed through the Kalman filter depend on the joint autocovariances of the variables of the UC model, which
in turn depend on the innovation variances. A UC model that allows for stochastic volatility in the innovation
variances would lead to a time-varying joint autocovariance of the variables in the UC model, implying a time-
varying predictive filtering weights (resulting in time-varying coefficients of the corresponding implied VAR).

11This feature of time-variation in the Phillips curve slope is an innovative characteristic of the Stella and
Stock model that differentiates their application from most other specifications of Phillips curve models based
on unobserved components. Koopman and Harvey (2003), and Harvey (2006) provide generic algorithms for
the unobserved components class of models to derive the implied weights of the corresponding VAR model
representation.
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in the measurement error introduced considerable high-frequency noise to the estimated trend
unemployment.

The unobserved components models of Stella and Stock (2013) and Lee and Nelson (2007)
share common features although there are three major differences between them. Firstly, Stella
and Stock (2013) incorporate a measurement error component in addition to random walk trend
and stationary cyclical components; secondly, they introduce stochastic volatility in all the un-
observed components (total of five); and they estimate the model using Bayesian methods which
together with multiple stochastic volatility processes makes it computationally quite intensive
to generate recursive forecasts.12

The model is estimated using Bayesian Gibbs sampler, and the algorithm is described briefly
below:13

The prior density for the parameters (α1, α2, and λ) is assumed to be normal conjugate
with mean of zero, and variance of 100.
Steps:

1. Conditional on observed data (services inflation, and unemployment rate), parameters
(α1, α2, and λ), and stochastic volatilities draw the unobserved state variables UN , πS,∗, and
UC

2. Conditional on the unobserved state variables, and stochastic volatilities draw the parame-
ters (α1, α2, and λ) from the posterior distribution. The draws of autoregressive coefficients on
the lags of the unemployment cyclical component, α1, and α2 are subject to linear constraints
so to ensure stationary cyclical component.14

3. Conditional on the unobserved state variables, and the parameters (α1, α2, and λ) we draw
stochastic volatilities. This step is based on work by Kim, Shephard, and Chib (1998).

The above steps are repeated for N+”burn in” draws.

At each forecast origin, the model is simulated with N+ ”burn in” draws discarding the first
”burn in” draws. For each draw, the forecasts of the services PCE inflation are generated by
iterating forward the above model equations h periods forward (recursive substitution). The
mean forecast of these N forecasts forms our posterior forecast of services PCE inflation.15

12Lee and Nelson (2007) estimate two specifications of the bivariate model, unrestricted, and restricted. The
restricted version imposes two sets of restrictions: (1) the cyclical unemployment rate was treated as exogeneous
with respect to cyclical inflation by setting the coefficients on lags of cyclical inflation to zero in the cyclical
unemployment rate equation. (2) they also restrict the autoregressive coefficients of cyclical inflation in its own
equation to zero on the premise that by removing the random walk inflation trend, any persistence that still
remains is due to the cyclical unemployment rate, which displays considerable inertia. The restricted specification
in Lee and Nelson (2007) closely resembles the specification in Stella and Stock (2013) except that the latter
introduces stochastic volatility to all the latent components. Using Lee and Nelson framework, our forecasting
results remain similar to the baseline results using Stella and Stock techniques, although the baseline is ordinally
more accurate. That said, the estimates of the latent components are different, especially the estimate of the
trend unemployment rate. The Lee and Nelson (2007) model is, as noted, simpler to implement and interested
readers can contact the authors for those results.

13We employ the same procedures as found in Stella and Stock (2013)
14Specifically, they are constrained to satisfy the following conditions: α2 <= 1−abs(α1), and α2 >= −1, see

Morley (1999).
15We simulate the model with N=10,000, and ”burn in”=5,000
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The h-step ahead forecast of services inflation for draw i, is

π̂st+h,i = π̂s,∗t+h,i + π̂s,Ct+h,i + ˆ̃ηt+h,i (12)

where h = 1, ..., 8

Accordingly, the mean forecast for the PCE services inflation is:

π̂st+h = 1/N
N∑
i=1

π̂st+h,i (13)

3.2 Modeling Goods Inflation

In modeling goods inflation, we adopt a parsimonious approach. That is, we assume that our
best forecast for goods inflation next period is the current estimated trend of goods inflation.
To estimate trend inflation, we explore various univariate specifications and choose the one that
leads to the most accurate out-of-sample forecasts of goods inflation for horizons one quarter
up to 12 quarters ahead over the period 1985:Q1 to 1993:Q4 (i.e. using sample that predates
formal forecast evaluation sample).16 The horse race includes various exponential smoothing
specifications, moving average specifications ranging from one year to six years, HP filter, and
the univariate unobserved components model with stochastic volatility (along the lines of Stock
and Watson (2007)). The five-year moving average specification on average fared best, hence
we choose that as our favored approach.8 Interestingly, our method of five year moving aver-
age also performs quite well relative to other smoothing methods over the forecast evaluation
sample period 1994:Q1 to 2014:Q4 (the sample period of interest)17.

Specifically, an estimate of future goods inflation in our modeling framework is a simple
arithmetic average of the available last five years of goods inflation data (i.e. moving average
of last 20 quarters):18

16All the models investigating goods inflation forecasts are estimated with data beginning 1959:Q1.
8This finding is consistent with that of Brayton, Roberts, and Williams (1999) who find that polynomial

distributed lag specification of order up to 25 quarters fit much better for aggregate inflation than shorter unre-
stricted lags, and also with the finding of Stock and Watson (2007) who find that rational longer lag specification
fits well for aggregate inflation.

17Alternatively, an exponential smoothing model with alpha=0.05 is a close approximation to the 5 year
moving average, and could also have been used for the baseline. Since these results are quite similar to the
forecasting evaluation performed over the training period 1985-1993 we do not report them but are available on
request from the authors.

18Multivariate modeling of all three components produced ordinary out-of-sample forecasting accuracy. A tri-
variate state space model that jointly estimates the relationship between goods inflation, service inflation, and
unemployment rate produced inferior forecasts for goods inflation. The model estimates since 1985 suggested
weak empirical relationship between the cyclical unemployment rate and cyclical goods inflation. The estimation
results of this tri-variate model specification are available on request from the authors. Movements in exchange
rates and in energy prices influence goods inflation, so we also evaluate the forecasts of goods inflation from
a multivariate model (BVAR) that consists of goods inflation, energy inflation, and exchange rates. With the
exception of one period ahead, forecasts from this model were generally inferior to the best smoothing procedures.
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πgt+h = 1/n
t∑

i=t−n
πgi (14)

where n=20, we evaluate forecasts of goods inflation for values of n=1, 2, 3, 4, 5, 6, 8, 12, 16, 20,
and 24. Using a value of n=20, leads to best forecasts of goods inflation over the pre-forecast
evaluation sample (i.e. training sample), and so we stick with this value for our baseline model.
Figure 9 plots the estimated trend goods inflation with the actual goods inflation. Table 4 re-
ports the out-of-sample forecasting results comparing various smoothing methods in estimating
the goods inflation trends over the training sample (1985:Q1 to 1993:Q4).

3.3 Forecasting Aggregate Inflation

The forecast of the aggregate inflation (quarterly annualized) at time t for h quarters ahead
is simply the composite forecast of the services inflation forecast and the goods inflation fore-
cast (both quarterly annualized) combined using the share weights available as of time t. The
weights reflect the relative share of services inflation, and goods inflation in overall headline
inflation. Specifically, the weight for services inflation is computed as nominal share of personal
consumption expenditures of services over nominal PCE, similarly weight for goods inflation is
computed as the nominal share of goods consumption expenditures over nominal PCE. Over our
forecast evaluation sample (1994.Q1 to 2014.Q4), the shares have been fairly stable at roughly
65 percent going to services expenditure and the remaining 35 percent to goods expenditures.

π̂t+h = wst π̂
s
t+h + wgt π̂

g
t+h (15)

We compare the forecasting results of our framework against the following five benchmark
models:

Random Walk model (Atkeson and Ohanian (2001)). According to this model, the
forecasts of aggregate inflation for h-quarters into the future is simply the average of the most
recent four available quarterly readings.

π̂t+h = 1/4
t−3∑
i=t

πi

Univariate AR4 model. An (unrestricted) autoregressive model of aggregate inflation
with four lags. The forecasts of aggregate inflation for h-quarters into the future is computed
iteratively.

We estimate the model using OLS, and then compute the one step ahead forecast for ag-
gregate inflation as:

π̂t+1 = β̂0 + β̂1πt + β̂2πt−1 + β̂3πt−2 + β̂4πt−3
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Similarly, the remainder of the forecasts for h-1 horizons are generated by recursive substi-
tution as follows:

π̂t+h = β̂0 + β̂1π̂t+h−1 + β̂2π̂t+h−2 + β̂3π̂t+h−3 + β̂4π̂t+h−4

Stock and Watson (2007) univariate unobserved component model with stochas-
tic volatility (UC-SV) model. This univariate UC-SV model has been among the most
accurate models over the forecasting period of our focus. The model forecasts for aggregate
inflation for h-quarters into the future are simply the model’s current estimated trend inflation
rate. Specifically it decomposes aggregate inflation into a stochastic trend component and a
transitory component, assuming time varying variances of the respective shocks to these two
components. The specification (consisting of four equations for estimation and one equation for
forecasting) is as follows (retaining the notation in Stock and Watson (2007)):

πt = τt + ηt, where ηt = ση,tζn,t ζn,t is i.i.d. N(0, I1)

τt = τt−1 + εt, where εt = σε,tζε,t ζε,t is i.i.d. N(0, I1)

ln(σ2
η,t) = ln(σ2

η,t−1) + νη,t, where νη,t is i.i.d. N(0, γI1)

ln(σ2
ε,t) = ln(σ2

ε,t−1) + νε,t, where νε,t is i.i.d. N(0, γI1)

γ is a scalar parameter that helps characterize the smoothness of the stochastic volatility
process, and so it can be either be estimated or fixed. We follow Stock and Watson (2007) and
fix it at 0.2.

Forecast of the future aggregate inflation is the current estimated trend inflation (i.e. fil-
tered estimate of τt)

π̂t+h = τ̂t

Stella and Stock (2013) Phillips Curve (PC). As discussed earlier, our services in-
flation Phillips curve specification closely follows Stella and Stock (2013). They jointly model
aggregate inflation and overall unemployment and find empirical support of the existence of the
Phillips curve. We use their model to produce forecasts of aggregate inflation.

Three variable BVAR. Given quarterly data on services inflation, goods inflation, and
unemployment rate, one could simply estimate a Bayesian Vector Auto-Regression of these
three variables. The quarterly forecasts of the services and goods inflation from the BVAR can
be combined using the expenditure weights to form a composite forecast of aggregate inflation.
We estimate a small BVAR in growth rates (four lags) estimated with the Minnesota and Sum
of coefficient (SOC) priors as one of the benchmark models. We set to one the values of the both
the hyper parameters that control for the tightness for Minnesota and SOC priors. Results in
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which values for the hyper parameters at each forecast origin are determined by maximizing the
marginal likelihood leads to substantially less accurate forecasts of inflation medium to long-run.

Let us denote vector Yt = [πgt , π
s
t , URt], then the forecasts are computed as follows

Ŷt+h = B0 +B1Ŷt+h−1 +B2Ŷt+h−2 +B3Ŷt+h−3 +B4Ŷt+h−4

π̂t+h = wst π̂
s
t+h + wgt π̂

g
t+h

3.4 Services Inflation and Short-Term Unemployment Rate

Gordon (2013) and Ball and Mazumder (2014) provide evidence that inflation behavior of the
past few years fits much better using short-term unemployment rate as the proxy for real ac-
tivity in the Phillips curve. The short-term unemployment rate, measured as the share of labor
force unemployed for 26 weeks or less, is likely the more relevant measure of wage and price
slack because it is claimed that the long-term unemployed exert negligible downward pressure
on wages and inflation. Empirical evidence in Clark (2014) and Peneva and Rudd (2015) finds
little support for using short-term unemployment rate versus overall unemployment rate in their
respective empirical frameworks; the models in each paper can explain equally well the recent
inflation behavior without using the short-term unemployment rate. Proponents of using short-
term unemployment rate in the Phillips curve claim to solve the missing disinflation puzzle (fall
in inflation predicted by conventional models that did not materialize) in the aftermath of the
crisis. Clark (2014), however, explains the missing disinflation by treating trend inflation as
long-run forecast from the Survey of Professional Forecasts (SPF) instead of the random-walk
trend that is a common feature of the conventional models.19. He argues that it is the treat-
ment of inflation trend that matters not the choice of the overall unemployment rate or the
short-term rate.

Given the mixed evidence, we investigate whether there are gains in the forecast accuracy
of the aggregate inflation if we use short-term unemployment versus the overall unemployment
rate in the specification of the services inflation forecasting model. We denote our inflation in
parts specification that uses short-term unemployment rate as STU spec, and the one that uses
overall unemployment rate as OU spec.

4 Results

4.1 In Sample Results

Figures 1 and 2 plot the posterior estimate of the natural rate of unemployment along with
the 90 percent probability band from the inflation in parts OU spec (upper panel) and STU
spec (lower panel) models respectively. The estimated trend unemployment (i.e. model’s im-
plied natural rate) averages around 5.5 percent, and the point estimate does not move above
6 or below 5 through the entire estimation and forecast sample. The model attributes most of
the time variation in the overall unemployment rate to the cyclical component. The degree of
uncertainty around the posterior estimate of the natural rate is quite wide as the 90 percent

19SPF is available from the Federal Reserve Bank of Philadelphia
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probability band on average ranges from -1 to +1 percentage points. On the other hand, esti-
mated trend unemployment for the short-term unemployment rate (spec 2), exhibit somewhat
more movements. Over our sample, it has ranged between 4 and 5 percent, it inched few tenths
higher at depths of the financial crisis, since then has gradually fallen, and currently is about
couple tenths lower than 4 percent (lowest reading since 1960). Again, the uncertainty around
this estimate is quite wide.

Figure 3 plots the posterior estimate of the trend in services inflation (including the un-
certainty around it) alongside the actual services inflation for OU spec. The trend estimate
for services inflation generally moves in tandem with actual services inflation up until about
1990. Since then, trend inflation has ranged between 2 and 4 percent and movements in actual
services inflation are largely attributed to cyclical factors. Over the last three years, estimated
trend services inflation has been declining and was 2.1 percent at the end of 2014. 20

Figure 4 plots the estimated trend in services inflation alongside the actual services inflation
for STU spec. Among the differences between the two specifications, the gap between the trend
and actual services inflation over the past few years (i.e. post-crisis period) is substantially
narrower (close to zero in the past two years or so) in the case of STU spec. The short-term
unemployment rate has been falling sharply in the past few years in turn helping to moderate
the gap between the estimated trend and actual services inflation (i.e. cyclical component) and
the trend that has been quite stable around 2.2 percent (since the end of the Great Recession).
In the last two quarters (i.e. 2014:Q3, and 2014:Q4), the estimated trend has slightly inched
lower to 2.0 percent.

Figure 5 plots the posterior estimate of the (common) cyclical component of the unemploy-
ment rate along with the recession bars (as dated by the National Bureau of Economic Research
dating committee). The visual inspection of the figure suggests movements in the cyclical com-
ponent unemployment rate are in line with the business cycle. That is, cyclical unemployment
increases during recessions, and similarly the cyclical component of unemployment falls with
an expanding economy. Figure 6 plots the estimated cyclical short-term unemployment rate
component; as in the previous figure, the cyclical component short-term unemployment accords
with the Business cycle.

Figure 7 plots the time-varying posterior estimate of the slope of the Phillips curve displaying
a negative (inverse) relationship between services inflation gap and the unemployment rate gap.
In our sample, the posterior estimate varies very little between -0.17 and -0.2 percent with 90
percent band ranging between -0.1 and -0.35 percent. Figure 8 plots the equivalent estimates
from STU spec in which the posterior estimate of the slope varies between -0.2 and -0.35 percent
with the 90 percent band ranging from -0.1 to -0.58 percent. The estimated slope steepened in
the 1970-80s, flattened in the 90s, steepened from the late 1990s until the onset of the Great
Recession, and then flattening out sharply from that point. The estimates exploit a Phillips
curve relationship that varies over the business cycle and there is considerable uncertainty

20The overall unemployment rate declined slowly so that the gap between the estimated trend and actual
services inflation has been elevated. In the past few quarters the gap has diminished driven mainly by sharp fall
in the overall unemployment rate. Overall, the contours of the trend services inflation estimated by the model
are quite similar to the estimated trend in aggregate inflation estimated in various other studies such as Cogley
and Sargent (2002), Ireland (2007), Lee and Nelson (2007), Cogley and Sbordone (2008), and Kim, Manopimoke,
and Nelson (2014).
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around it.

4.2 Pseudo Out-of-Sample Forecasting Results

In this section, we compare the point forecast evaluation statistics of our inflation in parts
framework with the models described above. Relative root mean square error (RMSE) is the
accuracy metric for comparing point forecast accuracy for horizons from 1 to 12 quarters ahead,
all of which are included in Tables 1 and 2. The target variable is the quarterly annualized PCE
inflation rate. Given limited availability of real time data for services and goods PCE inflation
separately, we resort to pseudo out of sample forecast evaluation. Hence, we use the data vin-
tage as of first quarter of 2015. To gauge whether the forecast gains are statistically significant
we report the significance statistics from the Diebold-Mariano test (with the Newey-West cor-
rection) for equal forecast accuracy between the inflation in parts model and the alternative
benchmark models.

We evaluate forecast accuracy using an expanding window of data. That is, we increase the
estimation sample by one quarterly observation for each forecast. Specifically, the initial esti-
mation sample runs from 1960:Q1 to 1993:Q4 (generating forecasts from 1994:Q1 to 1996:Q4).
We then estimate the model using data from 1960:Q1 to 1994:Q1 (forecasts from 1994:Q2 to
1997:Q1), .., and the final sample runs from 1960:Q1 to 2014:Q3. Accordingly, the forecast
evaluation sample spans 1994:Q1 to 2014:Q4, giving us about 84 one-step ahead forecast er-
rors, 83 two-step ahead errors, 82 three-step ahead errors and so on. We denote this as the
full-sample, but also report results of the forecast sample that end in 2007:Q3 (denote it as
’pre-crisis’ sample), meaning that we use no data beyond 2007:Q3 to evaluate the forecasts.
The limited sample results provide a check on the robustness of our results and help evaluate
the impact of the financial crisis on the forecast accuracy of inflation from these models.

Table 1 reports forecast evaluation results for the OU spec. The first panel of the table
reports results for the full sample (1994:Q1 - 2014:Q4) and the second panel for the pre-crisis
sample (i.e. 1994:Q1 to 2007:Q3). The first row reports the root mean square errors (RMSE)
of the inflation in parts model. The remaining rows report relative root mean square error
(relative RMSE) in which each row reports the ratio of RMSE of benchmark model listed in
that row (numerator) relative to inflation in parts model (OU spec, denominator). So a ratio
(relative RMSE) of greater than one indicates that inflation in parts model is on average more
accurate in forecasting aggregate inflation than the corresponding benchmark alternative.

On average over the full forecast evaluation sample, the inflation forecasts from the infla-
tion in parts model that exploits the Phillips curve relationship between services inflation and
unemployment rate are at least as accurate than any of the alternative benchmark models.
The statistically significant forecasting improvement occurs mainly from the 4 quarter or longer
forecast horizon.

Among the specific alternative benchmarks, the inflation in parts forecasts are about 6 to
10 percent more accurate (and in some cases statistically significantly more accurate) than the
forecasts generated from the model that exploits the Phillips curve relationship between aggre-
gate inflation and unemployment (Stella and Stock 2013). The inflation in parts model retains
an accuracy improvement over the pre-crisis sample. Forecasts from the inflation in parts model
are on average 15 to 25 percent more accurate than forecasts from the univariate autoregressive
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process of aggregate inflation (AR4) over the full sample. Again the forecast improvements are
statistically significant. The forecasting gains extend to the pre-crisis sample, and are statisti-
cally significant in medium and long-term only with about 20 to 30 percent more accurate in
relative sense.

Over the full-sample the inflation in parts model outperforms the univariate benchmarks:
Atkeson and Ohanian (2001) (RW) and Stock and Watson (2007). We see forecasting accuracy
improvements relative to Atkeson and Ohanian (2001) that are statistically significant in the
majority of the horizons. The Stock and Watson (2007) forecasts are statistically not signifi-
cantly different from those of the inflation in parts model. Over the pre-crisis forecast evaluation
sample, the inflation in parts model displays RMSE statistics that are statistically significantly
lower than both Atkeson and Ohanian (2001) and Stock and Watson (2007) starting at 5 quar-
ter forecast horizon and beyond.

The inflation in parts model outperforms the three variable BVAR both in full-sample and
pre-crisis sample. The RMSE over the full sample are on average 20 percent smaller and statis-
tically significant; and in the pre-crisis sample the relative forecast error reduction ranges from
10 percent in the short-term horizon to 30 percent or more in the later horizon, and are mostly
statistically significant.

Table 2 reports the forecast evaluation results for the Inflation in parts model (STU spec)
and compares them with the same benchmark models used in Table 1 for both full sample and
pre-crisis sample. We find evidence in support of using short-term unemployment rate in the
services inflation model. The improvements on average are modest; the RMSE for STU spec
are slightly better than OU spec. However, Table 2 displays several more statistical significant
forecast improvements compared to those reported in Table 1 for OU spec. For the univariate
benchmarks of Atkeson and Ohanian (2001) and Stock and Watson (2007), forecast accuracy
improvements appear to be statistically significant in general. Overall, the results are robust
to forecast evaluation sample (pre-crisis and the full-sample).

We employ the Stella and Stock (2013) model using short-term unemployment rate to esti-
mate the relationship between short-term unemployment rate and aggregate inflation (denote
this SS (2013) Short-UR). The exercise helps uncover whether the relationship between aggre-
gate inflation and the chosen unemployment rate measure differs from the relationship between
services inflation and the chosen unemployment measure. The last row of both panels in Table
2 shows the relative performance of this specification to inflation in parts STU spec. As can
be observed, STU spec outperforms SS (2013) Short-UR and the relative gains are very much
in line with the gains STU spec achieved over the Stella and Stock (2013) that uses overall
unemployment. In the pre-crisis period there does not appear to be much benefit in using
short-term unemployment with aggregate inflation but post-crisis period the relative RMSE in
full-sample is somewhat smaller for the short-UR specification. The inflation in parts model
outperformed the Stella and Stock (Short UR) by smaller margin than the original Stella and
Stock (2013), suggesting that in a model with aggregate inflation the use of overall or short-term
unemployment does not matter for out-of-sample forecasting in the pre-crisis period, consistent
with Clark (2014), Peneva and Rudd (2015). Second, the use of short-term unemployment rate
with services inflation is helpful because the out-of-sample forecasts of aggregate inflation from
the model that uses services inflation and short-term unemployment rate are statistically more
accurate over both the pre-crisis and post-crisis samples.
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It is worth mentioning, that across the board root mean square errors for the aggregate
inflation over the pre-crisis sample are notably smaller compared to the evaluation sample that
includes the Great Recession period. The RMSEs over the pre-crisis forecast evaluation sample
are on average five tenths lower (equivalently 40 to 50 percent lower).

We compare the accuracy of services inflation forecasts from the OU spec versus STU spec
to gauge the relative predictive value of short-term versus overall unemployment rate in the
specification. Table 3 reports the root mean square errors (RMSE) for services inflation for OU
and STU specs respectively. STU spec forecasts are more accurate than those of OU spec and
the degree of improvement somewhat varies depending on the forecast horizon. For example,
over the full forecast evaluation sample, one step ahead, STU spec RMSE for services inflation
is 0.489 versus 0.500 from OU spec, an improvement of about 3 percent, and 9 quarters out
the RMSE is 0.941 versus 0.989, a modest 5 percent improvement. The forecast improvements
are generally greater over the pre-crisis evaluation sample with services inflation forecasts from
STU spec 10,11, and 12 steps ahead about 7 to 9 percent more accurate compared to those
from OU spec.

All in all, the forecasting results provide modest evidence of statistically significant improve-
ments in the accuracy of the aggregate inflation forecasts using a composite forecasting model
of services and goods inflation that exploits the short-run relationship between services inflation
and short-term unemployment rate (Phillips curve).

5 Conclusions

In this paper, we model aggregate inflation by estimating sub-components of inflation (services
and goods separately). We employ the unobserved components model with stochastic volatility
as in Stella and Stock (2013) to exploit the correlation between unemployment and services
inflation as emphasized in Peach, Rich and Linder (2013) and use a simple moving average for
the goods component of inflation. We estimate the models from 1960:Q1 to 1993:Q4, forecast
from 1 to 12 quarters ahead and iterate this process in an increasing data window until the end
of 2014. The combination of forecasts from the subcomponents produces aggregate inflation
forecast that displays smaller RMSE than a set of the leading inflation forecasting (benchmark)
models. We note that the contribution to forecast accuracy arising from the empirical Phillips
Curve relationship is notable, and we also find that there are further gains in forecast accuracy
over this period when using the short-term unemployment rate in the model for services inflation.

16



References

Atkeson, Andrew, and Lee E. Ohanian (2001). “Are Phillips Curves Useful for Forecasting
Inflation?,” Federal Reserve Bank of Minneapolis Quarterly Review 25(1), 2-11.

Ball, Laurence, and Sandeep Mazumder (2014). “A Phillips Curve with Anchored Expec-
tations and Short-Term Unemployment,” NBER Working Paper Number 20715.

Benalal, N., Diaz del Hoyo, J. L., Landau, B., Roma, M. and Frauke Skudelny (2004). “To
aggregate or not to aggregate? euro area inflation forecasting,“ ECB Working Paper 374

Bermingham, C., and Antonello D’Agostino (2014) “Understanding and Forecasting Aggre-
gate And Disaggregate Price Dynamics,“ Empirical Economics Volume 46, Issue 2, pp 765-788

Brayton, Flint, Roberts, John M., and John C. Williams (1999). “What Happened to the
Phillips Curve?,” FEDS Working Paper Number 1999-49

Bruneau, C., De Bandt, O., Flageollet, A., and Emmanuel Michaux (2007) “Forecasting in-
flation using economic indicators: The case of France,“ Journal of Forecasting Vol. 26, pp. 1 22

Clark, Todd E. (2004). “An Evaluation of the Decline in Goods Inflation,” Federal Reserve
Bank of Kansas City Economic Review Second Quarter 2004

Clark, Todd E. (2014). “The Importance of Trend Inflation in the Search for Missing De-
flation,” Federal Reserve Bank of Cleveland Economic Commentary 2014-16

Cogley, Timothy, and Argia M. Sbordone (2008) “Trend Inflation, Indexation, and Infla-
tion Persistence in the New Keynesian Phillips Curve,“ American Economic Review, 98, 2101-26

Cogley, Timothy, and Thomas J. Sargent (2002) “Evolving Post-World War II U.S. Infla-
tion Dynamics,“ In NBER Macroeconomics Annual 2001, edited by Mark Gertler and Kenneth
Rogoff, pp. 331-73. Cambridge, MA: The MIT Press

Diebold, Francis X. and Roberto S. Mariano (1995) Comparing Predictive Accuracy Journal
of Business and Economic Statistics 13(3): 25363.

Duarte, C. and Antonio Rua (2007) “Forecasting inflation through a bottom-up approach:
How bottom is bottom?,“ Economic Modelling Vol. 24, No. 6, pp. 941-953

Faust, Jon, and Jonathan H. Wright (2013) Forecasting Inflation, in Handbook of Economic
Forecasting, volume 2 (North Holland)

Gordon, Robert J. (2013). “The Phillips Curve Is Alive and Well: Inflation and the NAIRU
during the Slow Recovery,” NBER Working Paper No. 19390

Lee, Jaejoon, and Charles R. Nelson (2007). “Expectation Horizon and the Phillips Curve:
The Solution to an Empirical Puzzle,” Journal of Applied Econometrics 22(1), 161-178.

17



Luetkepohl, Helmet (2010) “Forecasting Non-linear Aggregates and Aggregates with Time-
Varying Weights“ EUI Working Paper No. 2010/11

Hargreaves, D., Hannah Kite, and Bernard Hodgetts (2006) “Modeling New Zealand infla-
tion in a Phillips Curve“ Reserve Bank of New Zealand: Bulletin Vol. 69, No.3

Harvey, Andrew (2006). “Forecasting with Unobserved Components Time Series Models,”
Handbook of Economic Forecasting Volume 1 2006, 327-412

Harvey, Andrew (2011). “Modeling the Phillips Curve with Unobserved Components,”
Applied Financial Economics, 21, 7-17

Hendry, D. F. and Kirstin Hubrich (2006) “Forecasting aggregates by disaggregates“ Euro-
pean Central Bank Working Paper No. 589

Hendry, D. F. and Kirstin Hubrich (2011) “Combining disaggregate forecasts or combining
disaggregate information to forecast an aggregate,“ Journal of Business and Economic Statis-
tics Volume 29, Issue 2

Hubrich, Kirstin (2005) “Forecasting euro area inflation: Does aggregating forecasts by
HICP component improve forecast accuracy¿‘ International Journal of Forecasting Vol. 21, pp.
119-136

Ireland, Peter N. (2007) “Changes in the Federal Reserve’s Inflation Target: Causes and
Consequences.“ Journal of Money, Credit, and Banking 39, 1851-82

Kim, Chang-Jin, Manopimoke, Pym, and Charles R. Nelson (2014). “Trend Inflation and
the Nature of Structural Breaks in the New Keynesian Phillips Curve,” Journal of Money,
Credit, and Banking Volume 46, No. 2-3

King, Robert G., and Mark Watson (1994). “The post-war U.S. Phillips curve: a revisionist
econometric history,” Carnegie-Rochester Conference Series on Public Policy 41 (1994):157-219

Koopman, Siem Jan., and Andrew Harvey (2003). “Computing observation weights for sig-
nal extraction and filtering,” Journal of Economic Dynamics and Control 27 (2003):1317-1333

Morley, James (1999). “A Note on Constraining AR(2) Parameters in Estimation,” Wash-
ington University manuscript

Nelson, Charles R., and Williams G. Schwert (1977). “Short-Term Interest Rates as Pre-
dictors of Inflation: On Testing the Hypothesis that the Real Rate of Interest Is Constant,”
American Economic Review 67, 478-86

Peach, Richard, Rich, Robert, and M. Henry Linder (2013). “The Parts Are More Than
the Whole: Separating Goods and Services to Predict Core Inflation,” Federal Reserve Bank of
New York Current Issues in Economics and Finance Volume 19, Issue Number 7, 2013

18



Peach, Richard, Rich, Robert, and Alexis Antoniades (2004). “The Historical and Recent
Behavior of Goods and Services Inflation,” Federal Reserve Bank of New York Economic Policy
Review Volume 10, No. 3 (December):18-31

Peneva, Ekaterina V., and Jeremy B. Rudd (2015). “The Passthrough of Labor Costs to
Price Inflation,” Federal Reserve Board Finance and Economics Discussion Papers 2015-042

Reis, Ricardo, and Mark W. Watson (2010). “Relative Goods’ Prices, Pure Inflation, and
The Phillips Correlation,” American Economic Journal: Macroeconomics 2 128-157

Stella, Andrea, and James H. Stock (2013). “A State-Dependent Model for Inflation Fore-
casting,” forthcoming in Unobserved Components and Time Series Econometrics, Oxford Uni-
versity Press

Stock, James H., and Mark Watson (2015). “Core Inflation and Trend Inflation,” NBER
Working Paper 21282

Stock, James H., and Mark Watson (2007). “Why Has U.S. Inflation Become Harder to
Forecast?,” Journal of Money, Credit, and Banking 39(1), 3-33

19



6 Tables and Figures

20



Figure 1: Decomposition of Total Unemployment Rate (Inflation in Parts OU-Spec)

Figure 2: Decomposition of Short-Term Unemployment Rate (Inflation in Parts STU-Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 3: Decomposition of Services Inflation (Inflation in Parts OU-Spec)

Figure 4: Decomposition of Services Inflation (Inflation in Parts STU-Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 5: Cyclical UR – common cyclical component (Inflation in Parts OU-Spec)

Figure 6: Cyclical Short UR – common cyclical component (Inflation in Parts STU-Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 7: Time-varying estimate of implied slope of Phillips curve: Inflation in Parts OU-Spec

Figure 8: Time-varying estimate of implied slope of Phillips curve: Inflation in Parts STU-Spec

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 9: Goods PCE Inflation and the Estimated Trend
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Online Appendix

A1. Results Using Consumer Price Inflation (CPI)
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Figure 10: Decomposition of Total Unemployment Rate ( CPI Inflation in Parts OU-Spec)

Figure 11: Decomposition of Short-Term Unemployment Rate (CPI Inflation in Parts STU-
Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 12: Decomposition of Services Inflation (CPI Inflation in Parts OU-Spec)

Figure 13: Decomposition of Services Inflation (CPI Inflation in Parts STU-Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 14: Cyclical UR – common cyclical component (CPI Inflation in Parts OU-Spec)

Figure 15: Cyclical Short UR – common cyclical component (CPI Inflation in Parts STU-Spec)

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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Figure 16: Time-varying estimate of Phillips curve slope: CPI Inflation in Parts OU-Spec

Figure 17: Time-varying estimate Phillips curve slope: CPI Inflation in Parts STU-Spec

Notes: The estimates above are smoothed, reflecting information based on full-sample from
1960:Q1 through 2014:Q4.
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